Olesterol transport and regression of atherosclerosis. J Clin Invest 121: 29212931. 14. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, et al. miR33a/b contribute to the regulation of fatty acid metabolism and SC66 site insulin signaling. Proc Natl Acad Sci U S A 108: 92329237. 15. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al. A prevalent variant within the FTO gene is related to physique mass index and predisposes to childhood and adult obesity. Science 316: 889894. 16. Sanchez-Pulido L, Andrade-Navarro MA The FTO gene codes for any novel member with the non-heme dioxygenase superfamily. BMC Biochem eight: 23. 17. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318: buy 58-49-1 14691472. 18. Jia G, Yang CG, Yang S, Jian X, Yi C, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582: 33133319. 19. Han Z, Niu T, Chang J, Lei X, Zhao M, et al. Crystal structure of your FTO protein reveals basis for its substrate specificity. Nature 464: 12051209. 20. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, et al. N6-methyladenosine in nuclear RNA is usually a significant substrate with the obesity-associated FTO. Nat Chem Biol 7: 885887. 21. Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, et al. The obesity gene, FTO, is of ancient origin, up-regulated throughout food deprivation and expressed in neurons of feeding-related nuclei from the brain. Endocrinology 149: 20622071. 22. Church C, Moir L, McMurray F, Girard C, Banks GT, et al. Overexpression of Fto leads to improved meals intake and results in obesity. Nat Genet 42: 10861092. 23. Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al. A mouse model for the metabolic effects from the human fat mass and obesity related FTO gene. PLoS Genet five: e1000599. 24. Douaire M, Belloir B, Guillemot JC, Fraslin JM, Langlois P, et al. Lipogenic enzyme and apoprotein messenger RNAs in long-term major culture of chicken hepatocytes. J Cell Sci 104: 713718. 25. Wang XG, Shao F, Wang HJ, Yang L, Yu JF, et al. MicroRNA-126 expression is decreased in cultured primary chicken hepatocytes and targets the sprouty-related EVH1 domain containing 1 mRNA. Poult Sci 92: 18881896. 26. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, et al. Inactivation of the Fto gene protects from obesity. Nature 458: 894898. 27. Poritsanos NJ, Lew PS, Mizuno TM Partnership amongst blood glucose levels and hepatic Fto mRNA expression in mice. Biochem Biophys Res Commun 400: 713717. 28. Hermier D Lipoprotein metabolism and fattening in poultry. J Nutr 127: 805S808S. 29. Lau NC, Lim LP, Weinstein EG, Bartel DP An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858862. 30. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 19021910. 31. Wang D, Lu M, Miao J, Li T, Wang E, et al. Cepred: predicting the coexpression patterns of the human intronic microRNAs with their host genes. PLoS A single 4: e4421. 32. Lewis BP, Burge CB, Bartel DP Conserved seed pairing, frequently flanked by adenosines, indicates that a huge number of human genes are microRNA targets. Cell 120: 1520. 33. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. Combinatorial microRNA target predictions. Nat Genet 37: 495500. 34. Jia X, Nie Q, Lamont SJ, Zhang X Var.Olesterol transport and regression of atherosclerosis. J Clin Invest 121: 29212931. 14. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, et al. miR33a/b contribute for the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 108: 92329237. 15. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al. A typical variant inside the FTO gene is associated with physique mass index and predisposes to childhood and adult obesity. Science 316: 889894. 16. Sanchez-Pulido L, Andrade-Navarro MA The FTO gene codes for a novel member from the non-heme dioxygenase superfamily. BMC Biochem eight: 23. 17. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318: 14691472. 18. Jia G, Yang CG, Yang S, Jian X, Yi C, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582: 33133319. 19. Han Z, Niu T, Chang J, Lei X, Zhao M, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464: 12051209. 20. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, et al. N6-methyladenosine in nuclear RNA can be a main substrate from the obesity-associated FTO. Nat Chem Biol 7: 885887. 21. Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, et al. The obesity gene, FTO, is of ancient origin, up-regulated in the course of meals deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 149: 20622071. 22. Church C, Moir L, McMurray F, Girard C, Banks GT, et al. Overexpression of Fto results in elevated food intake and leads to obesity. Nat Genet 42: 10861092. 23. Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al. A mouse model for the metabolic effects of your human fat mass and obesity related FTO gene. PLoS Genet 5: e1000599. 24. Douaire M, Belloir B, Guillemot JC, Fraslin JM, Langlois P, et al. Lipogenic enzyme and apoprotein messenger RNAs in long-term primary culture of chicken hepatocytes. J Cell Sci 104: 713718. 25. Wang XG, Shao F, Wang HJ, Yang L, Yu JF, et al. MicroRNA-126 expression is decreased in cultured major chicken hepatocytes and targets the sprouty-related EVH1 domain containing 1 mRNA. Poult Sci 92: 18881896. 26. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, et al. Inactivation of the Fto gene protects from obesity. Nature 458: 894898. 27. Poritsanos NJ, Lew PS, Mizuno TM Partnership amongst blood glucose levels and hepatic Fto mRNA expression in mice. Biochem Biophys Res Commun 400: 713717. 28. Hermier D Lipoprotein metabolism and fattening in poultry. J Nutr 127: 805S808S. 29. Lau NC, Lim LP, Weinstein EG, Bartel DP An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858862. 30. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 19021910. 31. Wang D, Lu M, Miao J, Li T, Wang E, et al. Cepred: predicting the coexpression patterns on the human intronic microRNAs with their host genes. PLoS One 4: e4421. 32. Lewis BP, Burge CB, Bartel DP Conserved seed pairing, frequently flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 1520. 33. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. Combinatorial microRNA target predictions. Nat Genet 37: 495500. 34. Jia X, Nie Q, Lamont SJ, Zhang X Var.